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ABSTRACT

This research considers the problem of finding the jointly
optimum set of transmitted waveforms and receiver structure which
minimize average probability of error, where errors are due to addi-
tive noise and intersymbol interference. The channel characteristics
are assumed to be known and time-invariant.

The approach used here differs from other investigations of the
joint problem in that: (1) the receiver is not restricted to the linear
class and (2) the performance criterion is minimum average probability
of error. The memoryless, non-linear bayes receiver structure for M
bauds of pulse overlap is developed. The average probability of error
is also formulated. Then the channel memory is restricted to adjacent-
baud overlap (M = 1) in order to evaluate the probability of error.

An equivalent criterion to minimum average probability of error is
derived for signal design from the error curves. This criterion is:

(1) maximize energy transferred through the channel while (2) constraining
the cross-correlation energy between the head and tail of the channel out-
put signal. The optimum signal for an arbitrary channel is given as the
eigenfunction corresponding to the maximum eigenvalue of a symmetric
integral operator.

A numerical algorithm is given which was used to solve the integral

equation for the optimumm signal when supplied sampled values of an
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experimental channel impulse response. This procedure was most
effectively demonstrated with experimental telephone channel data.
Experimentel, optimum input-output waveforms are shown for an
experimentally simulated second-order channel. Computed, optimum
input-output waveforms are shown for experimental telephone channel
data.
The jointly optimum transmitter and receiver performance is
given for: (1) an analytic first-order channel, (2) an experimentally
simulated second-order channel and (3) data representing an experimental
telephone channel with quadratic delay. The performance of the jointly
optimum system for practical channels, such as the telephone channel,
is shown to achieve ultimate performance. That is, maximm
energy is transferred by the optimum signal while the receiver elimi-

nates the effect of intersymbol interference.



CHAPTER I

INTRODUCTION

1.1 The Problem

This research is concerned with the problem of finding the
Jointly optimum set of transmitted waveforms and receiver structure
which minimize average probability of error, where errors are due to
additive noise and intersymbol interference. The problem of inter-
symbol interference or pulse overlap occurs whenever high-speed digi-
tal communications are attempted over channels with memory. One
example where intersymbol interference plays & costly role is when digital
data is transmitted over telephone lineszo. Other examples of channels
with memory are multipath channels such as ionospheric or tropospheric
scatter channels. Underwater sonar channels are another case of multi-
path channels.

The problem of intersymbol interference on date channels has
received considerable attention in recent yearsl’z’u’9-11’13;16’25.
However, the approach used in this research differs from previous
effort in that minimum probability of error is used as the system
performance criterion and the receiver is not restricted to the linear
cless.

In this research, the channel impulse response is assumed to be

known and time-inveriant. For most practical channels, a reliable



measurement representing the current impulse response would be difficult
to obtain since noise is always present at the receiver input. Rather
than expend more energy in the sounding signal to make a reliable measure-
ment, a more practical approach might be to employ estimation theory to
determine the present impulse response given the current signalling
waveform set. The problem investigated in this research under the
assumption that the chennel is known and time-invariant has been con-
sidered by other investigators to be non-tractable. Consequently,
employing this assumption is Jjustified especially since results obtained
for this case will provide a "best performance bound" for the case

where the channel is not known and only &n estimate of the impulse

response is available.

1.2 Literature Survey

Previous research on the problem of intersymbol interference can
be catagorized as taking one of the following approaches: (1) signal
Design to eliminate intersymbol interference or minimize its effect,

(2) Receiver Design to reduce the effect of intersymbol interference

and (3) Joint Transmitter and Linear Receiver Design to reduce the

effect of intersymbol interference. Most of this research was restricted
to Linear Receiver Design since establishing the anelytic performance of
non-linear receivers is usually very complicated, if not non-tractable.

Following the Signal Design approach, a recent report by Hancock
and Schwarzlanderl showed that signals could be obtained which meximize
energy transferred out of the class which completely eliminates inter-
symbol interference. However, they also showed that a lower error rate

could be attained by permitting the received signals to overlap and then




basing the decision only on that portion which does not overlep with

the subsequent signal. This points out the fact that although signals
can be found which eliminate pulse overlap at the receiver, in so doing
the energy transferred through the channel is reduced, causing the

error rate to increase for a fixed noise power. Gerst and Diamond2

first showed that intersymbol interference can be completely eliminated
by signal design for the class of lumped, linear, time-invariant networks.
Cha.lk3 derived an optimum pulse shape for minimizing adjacent channel
interference and simulteneously maximizing energy transferred through the
channel. The research on signal design presented in this report differs
from references 4 through 7 and reference 12 since the optimization cri-
terion used here was minimum probability of error for systems with inter-
symbol interference.

From the Receiver Design approach, Helstrom8 proposed & non-linear
bayes receiver for M bauds of intersymbol interference. However, his
model was not sufficiently general to account for interference from
prior transmissions and evaluation of the receiver performance was con-
sidered non-tractable. Hancock and Aein9 considered using a linear
correlation receiver with memory which employed prior decisions and
improved performance. Gonsalves and Loblo offered a receiver with
memory for the case of adjacent baud overlap. However, they could not
specify the probability of error but bounds were attained. Hancock and
Changll proposed an unsupervised learning receiver structure for channels
with intersymbol interference and unknown received signal waveforms.
Theoretical probability of error was not given for the intersymbol

interference case. Only computer simulated results were shown. Aaron



and Tuftsl3’15

used both minimum average probability of error and
minimum mean square error criteria to specify linear, time-invariant
receiving filters for digital data transmission with intersymbol
interference. For signal-to-noise ratios of practical interest, the
optimum linear filters were found to be representable as matched filters

followed by tapped delay lines. Lucky25

s et.al., devised an automatic
equalization scheme to reduce the distortion caused by intersymbol
interference. This scheme was implemented by a tapped delay line with
tap gains automatically adjusted by measurements made on test pulses.
Two reports by Tuftslu and Smith16 which used the Joint Trans-
mitter and Linear Receiver approach employed a minimum mean square
error criterion on pulse amplitude modulation systems. These both
differ from this research in that the receiver considered here is non-

linear and the performance criterion is minimum average probability of

error.

1.3 Approach and Contributions

The approach used in this thesis to reduce the effect of inter-
symbol interference is Joint transmitter and receiver design. That is,
the jointly optimum transmitter waveforms and receiver structure are
sought which will minimize average probability of error. The receiver
is assumed to be memoryless, but it is not restricted to the linear
class. In Chapter II, the receiver is shown to be non-linear for the
general case. The results in Chapter V verify that for practical
channels, adding memory to the receiver would not improve performance.
However, adding memory to the non-linear receiver would be certain to

meke the evaluation of probability of error non-tractable.




An ideal zpp.coach te this problem would be to derive the bayes
receiver structure from the maximum likelihood ratio. Then the next
step would be to derive an expression for probability of error involving
transmitted signal parameters. By applying variational techniques to
this expression, the optimum signal would be sought which minimizes
probability of error.

The actual approach used begins along the ideal route by deriving
the receiver structure from the maximum likelihood ratio for a binary
system with M bauds of overlap in Chapter II. Average probability of
error is formulated also. Then in Chapter III, the pulse overlap is
restricted to adjacent bauds in order to make the evaluation of proba-
bility of error tractable. The functional expression for performance
is numerically integrated, revealing the effect of signal parameters.

A criterion for signal design equivalent to minimizing probability of
error, is derived from the family of curves representing performance.
These curves show that the energy transferred through the channel should
be maximized while simultaneously minimizing the head-tail cross-cor-
relation of the received signal. In Chapter IV variational techniques
are applied which yield the optimum signel as an eigenfunction corres-
ponding to the maximum eigenvalue of a symmetric integral operator.

In order to demonstrate the validity of the approach used, a first-
order channel is considered and the optimum signal is solved for analyti-
cally. Curves are given showing relative improvement in performance by
using the jointly optimum transmitter and receiver compared with a rec-
tangular pulse and correlation receiver. Additional contributions are

given in Chapter V. A numerical method is discussed there which solves



for optimum signals when given sampled values of an experimental impulse
response. A second-order channel is experimentally simulated, the optimum
weveform is obtained numerically and then experimentally transmitted
through the channel. A rectangular pulse is also transmitted through this
channel. Both channel outputs are numerically processed to yield energy
transferred and head-tail cross-correlation. Performance curves are
given showing that the jointly optimum transmitter and receiver have a
performance equal to that of a system without intersymbol interference.
Also the optimum pulse transfers 1.6l db more energy than the rectangular
pulse.

In order to demonstrate that this numerical procedure is velid for
more arbitrary experimental channels then lumped parameter channels,
experimental data for a telephone channel was subjected to the numerical
algorithm and the optimum transmitter waveform obtained. Performance
curves again showed that the jointly optimum transmitter and receiver
perform as well as a system without intersymbol interference. Thus the
effect of intersymbol interference was completely eliminated while the

energy transfer was increased from that of & rectangular pulse by 10 db.




CHAPTER II
GENERALIZED BAYES RECEIVER FOR CHANNELS

WITH INTERSYMBOL INTERFERENCE

2.1 Mathematical Model

Consider the binary communication system shown in Figure 2-1.
*
One of two possible waveforms , {sl(t), sz(t)}, is transmitted over a

specified channel having memory and. impulse response h(t). Noise, n(t),

1
H
OPTIMUM s; (¢) KNOWN z; (t) x(t) —
WAVEFORM ~[——| CHANNEL [ - gggEmmUMR
GENERATOR i WITH 1 -
MEMORY H,
] 82
n(t): N

Figure 2-l1l. Binary Communication System

is added to the channel output, z(t), yielding the receiver input x(t).
The receiver operates on the input, X, and then makes a hypothesis at

the end of each observation interval. Either hypothesis Hl is made,

*
Throughout this research upper case letters will be used to denote
matrices and either subscripted or superscripted lower case letters
will be used to denote matrix elements.



announcing Sl is present or H2 is made, announcing S2 is present.

These hypotheses are to be made with minimum average probability of
error.
Figure 2-2 shows a typical pair of transmitted and received

signel waveforms for a channel having memory. The receiver observes

Head
Tail
] :
0 T S?éﬂNEL 0 T “‘"_"(ﬁ:i)T==
o) MEMORY M 2 (¢)
h(t)

Figure 2-2. Typical Transmitted and Received Signal Waveforms

the total received signal over [0, (M+1)T]. The channel in Figure 2-2
is said to have a memory of M bauds since the output signal is stretched
by a factor of at most M times the duration of the input signal. That
is, M is the smallest positive integer satisfying the condition that
z(t) has decayed to zero for t < (M+l1)T.

The criterion of optimality used in jointly selecting the receiver
structure and transmitted waveform is minimum average probability of
error,

let a finite set of orthonormal basis functions be chosen such
that the time functions z(t) and x(t) can be represented by column
vectors of the series expansion coefficients. The set of basis functions

is assumed to be chosen such that the difference between the value of
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inner nroducts in integral form and vector form are arbitrarily small.
The problem of selecting a finite set of basis functions to minimize a
specified error is recognized as being a significant research areea in
recent yea&ars end will not be discussed here.

The assumptions used in the following research are listed as
follows:

l. The additive noise is zero-mean, stationary, gaussien with
statistically independent vector components such that N = 0 and the
covariance is Qn = NoI' No is the variance of each component and will
be called noise power.

2. The channel impulse response is real, time-invariant, specified
and exhibits M bauds of memory.

3. The signalling rate is 1/T such that the output pulses overlap
yielding intersymbol interference.

L, The receiver is synchronized to the transmitter starting time.

4, The receiver has zero-memory (uses only present data) with
observation period [0, (M+1)T] and has available the set of possible
output signal waveforms due to a single pulse of either sl(t) or sz(t)
tranzmitted.

Since the signalling rate is 1/T, the received signal waveforms,
as shown in Figure 2-2, will have overlap. In each receiver observation

time slot, [0, (M+1)T], there sare
r=2 (2.1)

possible combinations of received signal plus intersymbol interference

waveforms on [0, (M+1)T] due to sl(t) being sent on [0,T] and another



10
M
r combinations if sz(t) is sent on [O,T] making a total of 2r possible
waveforms plus noise that can be observed in each observation slot.
The above mathematical model of the received signal waveforms plus
noise can be described as a Markov source plus gaussian noise since the
observation of the signal and intersymbol interference waveform during

any one time slot depends on past and furture transmissions.

2.2 Maximum Likelihood Ratio

The bayes receiver structure can be interpreted directly from the
maximum likelihood ratio for an arbitrary channel with memory M, trans-
mitter waveform set {sl(t), sz(t)] and a priori probability set [Pl, PZ].
If costs are set equal, then this receiver guarantees minimum probability
of error.

; *
The likelihood ratio can be expressed as

d
N

p(X]s,)
A(X) =Rﬂ—8? : i’z (2.2)

Letting

K = (2°3)

H"Ul N"U

and applying bayes rule to (2.2), the ratio can be expanded into the

form

r
RLEEMEICHS
j=1
r
) p(Xlz,) ®(z,,)
3=1

A(X) = K (2.4)

since specifying S, was sent is equivalent to specifying one of the

r members of the receiving set {Zij} was received. The total received

* .
Throughout this research p will be used to represent probability
density functions and P will denote probability.
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waveform of signal and intersymbol interference plus noise is expressed

in vector form as

X=2Z,.+N
iJ

where Zij is one of ihe possible 2r received signals plus intersymbol

interference observable on [0, (M+1)T].
Under the additive gaussian noise assumption, the conditional

densities in (2.4) can be replaced by the multivariate gaussian density

4 (X-2, )Ti;ll (x-2, ; )

= (2.5)
(2x)*/% |5 _|?

p(XIZiJ.)

By substituting (2.%4) into (2.3) and simplifying, the likelihood ratio

can be expressed as

Ax) = = T : K (2.6)

where

T -1
- Iy 8y 2y

¢y = P(Zij) e (2.7)

The P(Zij) are a priori probabilities and the "energy to noise" weighting
coefficients are given by the exponential in (2.7). Applying the
assumption that the noise samples are statistically independent, the

noise covariance matrix Qn reduces to

3 = NoI (2.8)
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i.e., the product of noise power and the identity matrix., Applying

(2.8) to (2.6), the likelihood ratio reduces to the final form of

K (2.9)

where the threshold K is given by (2.2), r is given by (2.,1) and 5

is given by (2.7).

2.3 Receiver Structure

The generalized bayes receiver structure can be interpreted
directly from the likelihood ratio in (2.9). Figure 2-3 gives one
interpretation of (2.9) in receiver form. This receiver is not a linear
correlation receiver; however, for special caseslb of received signals it
will reduce to that form. Equation (2.9) shows that the receiver input
on [0, (M+1)T], consisting of signal, intersymbol interference and noise,
is cross-correlated with each of the 2r possible waveforms of signal
plus intersymbol interference. Each of these correlator outputs is
exponentiated (which introduces a non-linearity) and weighted by a
priori probability and "energy to noise" coefficients. Those r weighted
outputs pertaining to sl(t) being sent are summed. Similarly those r
outputs pertaining to sz(t) are summed. Then the ratio of these sums
is compared to the threshold determined by the ratio of the a priori

probabilities of sz(t) and sl(t).
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Z]‘]’/No Cll
QD= 2
Zyo/n . %10

7, £
X /No A
— - 6 COMPARATOR
—8
P2
A< =—
Z2I‘ /N [ ] 2r

Zze/no €20
~@>{=1-¢
z21/No C
A zfa 2y

r=2 (2.1); Cpy = P(z,) e ° (2.7)

Figure 2-3, Generalizedeayes Receliver
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2.4 Formulation of Probability of Error

The average probability of error for the generalized bayes receiver

above can be expressed as
P, =P(r< k|s,) B, + P > K[s,) P, (2.10)

where K is the threshold and the set of probabilities (Pl, Pz) are the
a priori probabilities of the signal set [Sl, S2]° Equation (2.10) can
be expanded similarly to the expansion of the conditional densities in

the likelihood ratio of Section 2.3, resulting in the expression

r
P, =) [P < K|z,,) P(z),) P
-1

+ P(\ > Klzu) P(Zzz) P,] (2.11)

r

=) [p, P(z,) P(h, < K)

4=1
+ P, P(Zu) P()\u > K)] (2.12)
where kkz will be called a conditional likelihood ratio implying that

Zkz is given such that

A, = MX[Z,) (2.13)
where
(x|z,) =2z, +N (2.14)

is a gaussian random variable. From (2.9), (2.13) and (2.14%) the condi-

tional likelihood ratio can be expressed as




1 T
r ﬁo(zu * W)z
2"13 €
a1
Meg = & T : K (2.15)
r = T
+
}Lc eNo(ZkL N) ZZj
2
=1
For convenience define
c , J=1,2, ceuy T (2.162)
b, = { 1
3l 5=, re2, ..., 2r (2.160)
and the conditional random variables
1 T .
ﬁ' (Zkz+ N) le ] J = l, 2, seey r (2017&)
o
kg
wj = ﬁ
1 T .
5 (zu+ N) Z, jor j=1r+l, T+2, ce., 2r (2.17v)
- o ’ ’

The set {yﬁz} of 2r random variables are jointly gaussian since (2.16)
represents a linear operation on the gaussian noise. Employing (2.16)

and (2.17) in (2.15), Ay, Pecomes

r wkz
Elb. e J
J

=]

e 9= .
xu— Xz K (2.18)

2r .
J

L by

J=r+l

Now from (2.12) and (2.18) a typical term can be expressed as

r wkz 2r wlz
_ 3 3
P(hy, < K) P( jzlbj e 9 - K zlbj ed < o) (2.19)
= j=r+

Assuming that the set {ij] of received signals plus intersymbol
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interference are linearly independent then the set of jointly gaussian

variables (w?t} are linearly independent and the joint density is of

the form
- (- T T 7
P(Wk‘c) = 3 T §
(2n)" |8, |
From (2.17) the means are
~
1,.T
=2 7 . s J=1, 2, eee, T (2.21a)
i.J ) No ke 1J > ’
w = <
! 1T
- = r+ +2 000 2.21b
i Nozkzzz,j-r , J = r+l, r+2, , 2r ( )

since ﬁ = 0, The covariance matrix and inverse will be denoted by

_ -1 . 1]
&, = [cij] ) &, =[]
where
(1,1,
N "1171j ; i, =1, 2, ooy T (2.23a)
sy =X l»ZT Z
ij N "2,1-172, §-1; i,j = r+l, r+2, ..., 2r (2.23b)
A ; i=1,2,...,r 3 J=r+l,r+2,...,2r (2.23c¢)
No 1i z’j_‘r s yLygoooy ’ 2 b b

—

Now from (2.19) and (2.20) the conditional probability of error is

2r
POy, <®) = [ ..o [26*) TT avy’ (2.24)
likewise

2
POy, > K) = [] o [26@H TT av? (2.25)
24 J=1

(2.20)

(2.22)
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where the regions of integration can be solved from (2.19) in terms of

one of the variables as

x T wll,
- 14 12 l!, 12 1y _ ( 1 2 J
R W W w.. > Vo, = In 5 b j e

| 14 ™M 2 Y22ttt Vor P Ver

--——-Zb ej>} (2.26)

-r+1

- 24 28 21,_ 21. ( _1 2‘
R!’ {wl,wz,..., Vor 2r<wr = 1ln Kb b, e

s Loy D) -2

Referring to (2.12), (2.20) and (2.25) the final form for the

average probability of error for M bauds of pulse overlap is

=) [rrs Wy Fee 1T e,

=1 J=1
+ 2,2(2,,) [f - { o(?h) ]j av,*] (2.28)

2L

Equation (2.28) shows that the probability of error is obtained from

a sum of 2r terms, each of which involves integration over a region of

8 2r-dimensional space where the boundary is specified by a transcen-

dental equation.




1.8

CHAPTER III
BAYES RECEIVER FOR ADJACENT BAUD OVERIAP,

EQUI-PROBABLE, BIPOLAR SIGNALS

3.1 Maximum Likelihood Ratio

The general results developed in Chapter II are applied to a
special case of interest in this chapter. Since the prime objective
of this research is to minimize average probability of error, the trans-
mitted signals were chosen to be equally-probable and bipolar, i.e.,

P, =P , 8, = -8, (3.1)

The individual signals occurring in an arbitrary sequence of trans-
mitted signals are assumed to be ststistically independent events. 1In
order to reduce the dimension of the spaces involved in the average
probability of error of (2.28) to one which might conceivably be
numerically integrated, an additional assumption was placed on the
channel. For the remaining research in this thesis, the memory of
the channel is assumed to be M = 1, hence

r =22y (3.2)

This condition yields adjacent baud overlap only, of received signal
pulses. In this case the receiver observes on [0,2T] for signals
trensmitted on [0,T].

The maximum likelihood ratio given by (2.9) reduces to
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1.T
L ¥ X le
E:a e ©
13
=1
‘ y iv'ox Zy 5
z;alj e
J=1
where
1 T l T
L e R AL E R
a, . =e ° =e ° (3.4)
1]
are the "energy to noise" weighting coefficients. The & priori

probabilities that were involved in (2.9) have cancelled each other in
the numerator and denominator of the ratio since occurrence of the trans-
mitted signals is assumed to be statistically independent and equi-

probable.

3.2 Receiver Structure

The receiver structure for this speclal case is given by Figure
2-3 where only four upper branches pertaining to Sl are required and

four lower branches pertaining to S2 = -S. are required. In this case

1
ZZJ can be replaced by -le for all j, K replaced by unity and clj’
czj replaced by alj for all j.

3.3 Formulation of Probability of Error

For this case of only adjecent baud overlap, the number of possible
received signal waveforms plus intersymbol interference on [0,2T] is
r = 4 when 8, is sent on [0,T] and another four are possible when 5, is
sent. The set of possible recelved signals plus intersymbol interference

when Sl is sent is ordered as follows:
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- L, T
Zy=Z+Z +7 (3.58a)
£ r
Zy, =2+ -5 (3.5b)
y A r
Zl3 Z - Zt - Zh (3050)
r
Z1u=z‘z1£;+zh‘zll"zlz+z13 (3.54)
Z i1s the single-shot output of the channel on [0,2T] when Sy is sent
on [0,T]. 7% is the tail of & Z on [T,2T) shifted to the left by T

t

seconds corresponding to the tail from a previous Sl transmission.
Z; is the head of & Z on [0,T] shifted to the right by T seconds cor=-

responding to a future transmission of S When S2 is sent, the other

10
set of four possible received signals plus intersymbol interference
will be the negative of (3.5) due to a similar ordering of subscripts
and the bipolar assumption. Equation (3.5d) shows that the set of four
waveforms in (3.5) is linearly dependent. Hence, Zlh will be replaced
by a linear combination of the other three as shown in (3.5d).

From (3.3) the conditional meximum likelihood ratio can be

expressed as

b = MXI2)
r kg
a ew'j
1]
J=1 \
=77 kg ° 1 (3‘6)
3
zalj e
j=1
where
ki 1 T
vy =§ (B, *N)Z4 ,  3=1,2, 3k (3.7)
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From (3.54), wﬁz can be replaced by a linear combination of the other

three as
k. 4 k
vhz = wﬁl - wzz + WBL (3.8)
Substituting (3.8) in (3.6), xu can be expanded as
3 wl;z WEL ke wl;z
Zalj e + al‘-l- e
- =1 .
Ay = _EL, KL XL 1 (3.9)
1 2 3

3 _wgz
2:‘13 e +a), e
j=1

Since the transmitted signals are equi-probeable and assumed to

be statistically independent, then the Zi 's will be equi-probable and

J
the average probability of error can be expressed a&s & special case of
(2.12) as y
1
p=3 ) [P0y, <D + 20y, >1)] (3.10)
2=1

However, from the equi-probable, bipolar characteristics of the trans-
mitted signals, the two types of error are equally likely. Hence,
(3.10) will reduce to

i

P =f ) POy, <1) (3.11)

2=l

From (3.9), the probabilities in (3.11) can be expressed as

3 VR
oy < - g, (- )
=1

IR S U e e e
. (el 2 3 .. 1 2 3><0]
81y

(3.12)
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Solving for wé’e’ in terms of wi‘e' and w;'!‘ s (3.12) can be rewritten as

*
P(ry, < 1) = P {wé‘ < wél' = 1n [- 2[5 }Gas)

where
ETRY
A= 85 + e e (3.13a)
g R
B=a, (e - e ) * g, (e -e ) (3.13b)
e
C == <a13 + ey e ) (3.13¢)
. lg 1p 1y . . :
Since the set of variables Wit W, w3 are jointly geussian, the final

form for average probability of error for the adjacent baud overlap

case can be expressed as

4 18
_1 A o 1g
A R R I R g X (3.24)
-0 =0 =00 j:l
2=1
10" 1 1
where w31' is given by (3.13), w:le, wzz, w3£’ are given by (3.7) and
- 3T it
p(uw?) = & (3.15)

(2033, |P

Equation (3.14) shows that the probability of error is obtained
by an integration over a region of a 3-dimensional gaussian space where
the boundary of integration is described by a transcendental equation.
Appendix A discusses a numerical method used to carry out the integration

on the computer.
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3.4 Receiver Performance and Effect of Signal Parameters

Figure 3-1 displeys a comparison of the optimum bayes receiver
performance for several pertinent values of the megnitude of p. Signal-

to-noise ratio is defined as

XZTzz(t) at

0
e (3.16)

(+]

2|L=1
o

(o]

and the normalized head-tail correlation is defined by

T
f z(t) z(t+T) dt

p = = (3.17)

E

i.e., the ratio of chammel output energy (due to a single pulse in) to
the noise variance. These curves of average probability of error are
the resultszz of numerically integrating (A.1l%a). Probability of
error did not change as "a" -- the normalized head energy -- was varied
over three typical values, a = 0.4, 0.5, 0.6, The performance for
larger values of signal-to-noise ratio was not evaluated because of
simultaneous underflow and overflow occurring in the same arithmetic
computer statement.

Curve number 1 -- the lowest curve, is the performance of the
optimum bayes receiver for orthogonal head and tail (p=0). Quincyl7
showed that when the head and tail are orthogonal, the optimum receiver
can be reduced to a linear correlation receiver. This curve also cor-
responds to the performance of the optimum receiver and a standard

correlation receiver when no intersymbol interference is present.

Curve number 2 shows that performance of optimum receiver at
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Figure 3-1. Optimum Receiver Performance for AdJjacent Baud

Overlap and Equi-Probable, Bipolar Signals
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Eo/N = 8db is degraded by less than 0.1 db for |P’ = 0.1, compared to
no intersymbol interference. Curves 3 and 4 show that probability of
error increases monotonically for increasing |p|. For the specific
channels considered in this research, signal design for maximum energy
transferred produced signals with |p| < 0.3 and in some cases |p| was
less than O.1.

Curve number 5 -- the top curve of Figure 3-1, represents the per~
formance of a standard correlation receiver with the threshold optimized

for intersymbol interference. The performance for this receiver is

given26 by
EO Eo
- Ja 7 (1+p/a) - Ja 7 (1-p/a)
11 Yo u?/2 1 Yo u?/2
Pe =3 Ton I e du + Ton L e du (3.18)

This receiver observes on [0,T] only over the head of the received sig-
nal. The percentage of received energy in the head for this example,
wvas & = 0.69% and the normalized head-tail cross-correlation energy
was |p| = 0.3. At E_/N = 8db, the performance of the standard corre-
lation receiver is approximately 2.7 db worse than the optimum receiver,
in terms of signal-to-noise ratio. This separation increases rapidly
as any one of the following occurs:

1. Eo/No increases.

2. a decreases.

3. p increases.



CHAPTER IV
Y/ VEFORMS WHICH MINIMIYY PROBABILITY OF ERROR

FOR CHANNELS WITII INTERSYMBOL INTERFERENCE

4.1 Optlimization Criterion

Channels with memory of M = 1, i.e., adjacent baud overlap,

Wil be asmvmed in this chepter in order that an cptimization cri-
tericn for selecting transmitted waveforms may be extracted from

Pe -~ the probability of error given in sccticn 4. Thir nrcbebilily
of error was derived for the class of channel: with unit memcey ond
equally-likely, bipolar (but otherwise arbitrary) signals.

Figure 3-1 shows the effect of received signud parcmeter: on
probebility of error. Since the channel impulse response is given,
theoe channel outpul paramcters can be related directly to the trans-
mitted signal by the convolution integrali. The two received signal
parametcrs appearing in the performance curves of 3-1 are EO -~ the
signal encrgy out of the channel and jp| -~ the magnitude of the cross-
correlaticn o the heod wnd tals nornslized to EO. For a fixed
S e Goen0io e PnuLe, I_’O oo menotonic inerceocins uanetlon 01'|r~|.

1
senee, Jo] should be reduced without signiricently reducing b . Cuiney™
showed that in general, jp| cannot be made arbitrarily =mall without
reducing Ec' The trade-cf'! between|o|and Eo must be performed at

ecoch value of signal-to-noise ratio in order to show which 15 more
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significant, a reduction in |p| or increase in Eo. Schwarzlanderl
showed that the reduction in energy transferred through a channel
caused by specifying the output signal to be time-limited to the same
base as the input signal (corresponds to a trivial case of orthogonal
head and tail) while maximizing energy transferred, actually increases
probability of error.

The optimization criterion set forth from the preceding discussion
to select transmitter signal waveforms is the following:

1. Constrain Ei’

2. Constrain p or equivalently Ei =09 Eo'

3. Maximize Eo'

4,2 Formulation of Calculus of Variations Problem With Two Constraints

The problem of selecting transmitted signal waveforms which are
jointly optimum with the receiver structure can be formulated from the

preceding section by selecting the signal which
Hax {Ey - ME; - ARy } (.2)

i.e., select the signal which maximizes the channel ocutput energy

with the input energy constrained to E, and the cross-correlation

i
energy of the head and tail constrained to Eht’ The class of problems
described by (4.1) includes the problem of maximizing energy trans-
ferred through a channel of arbitrary memory, solved by Chalk3, as &
special case when xz = 0.

A family of optimum signals can be obtained by allowing Eht

to vary in the solution to (4.1). This will yield a set of values




oi" i  ec o tuaacticn of Rh“' The ultimate minimum prebobiilty cof
. 2
error cignal can be obtuinet =t ecuch velue ol signai-tc-noise retic

by rerrormaing a trade~cff betveen E eni E _ cn the femily of curves
-

ht
for probability ol error in Figure 3-1.

In order to tuake adventage of symmetry, the tranzmitted signal

iz shifted in time such that s(t) occurs on |-L,L] where
L =T/2 (#.2)

Consequently the channel cutput z(t), will be observed on [-L,3L} for
these physically realizable channels of unit memory. After the solution
for an optimum signal is obtained, s(t) can be shifted back onto ([0,T;

and likewice z(t) onto {0,2T1.

The energy out of the channel can be expressed ac

00
E = f 22(t) at (4.3a)
° -
- [P0 a (4.3p)
-L
where
t<L
j s(t) h(t-1) a1 , -L<tg 3L
Z(t) = -L (LF.“')
0 ’ otherwise
In the frequency domain (4.3) becomes
° *
E, = j z(f) z (f) af (&.5a)
-0

= Iw[s(f) H(£)] [s (£) H ()] af (k.5b)
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where the * represents complex conjugate. Employing the Fourier

integral, (4.4b) can be rewritten as

E = I: [ Iis(x) e I0T dTJ [ Izs(t) eJot dt] |H(f)|2 ar (4.5¢)

Assuming the order of integration is arbitrary, (4.5c) can be replaced by

L L CJ s
E_ = f [ stt)s(o) [ [ u@)? oJolt-7) df] dt at (&.5a)
-L -L -
L L
- J j s(t)s(r) K (t,7) ar at (4.5e)
‘L L
where
K (t,7) = K (,t) (4.6a)

-]

.|

u(e)|? 32 (57) ge (t.6b)

is a symmetric functional and H(f) is the transfer function of the
channel.
The energy into the channel is given by
L

2
E; = XL s“(t) dt (%.7)

Figure 2-2 describes the head and tail of a signal out of a

channel., Head-tail cross-correlation energy is defined as

L
E,, = j z(t) z(t+2L) dt (4.8)

ht Iy,

From (4.4) and employing the causal property of the impulse response,

(4.8) can be rewritten as
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L L LL
E. = iL IL IL s(t)s(x)h(t-1)h(t+2L-x) drdxdt (4.92)

Interchange the dummy variables x and t in order to obtain a form
similar to (4.5d). Assuming that the order of integration is arbitrary,
(4.9a) cen be rewritten as

Epy = Ii iz s(t)s(t) [ li h(x-7)h(x+2L-t) dx ] dtdt (&.9p)

In order to form a symmetric kernel in the final solution, (4.9b) can be
expressed as one-half the sum of two integrals where the second is iden-
tical to the first except for an interchange of dummy variables t and 7.

Hence,

E,, = j'L j'L s(8)s(v) { : j'z [n(x-f) h(x+2L-t )

+ h(x-t) h(x+2L-T)] dax } drat (4+.10a)

L LL
= f I s(t)s(t) Kz(t,r) dr dt (4+.10p)

"L L

where
Kz(t,r) = Kz(r,t) (+.11a)
L

= % lL [h(x-r) h(x+2L-t) + h(x-t) h(x+2L-T)] dx (4.11b)

is a summetric functional for real h(t). The causal properties of
h(t) are emphasized for those who integrate (4.11b).
The final formulation of the variational problem with two con-

straints cen be expressed by employing (4.5c), (4.7) and (4.10b) in
(4.1), as
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L L

ax {160 - [ [

L o2
. s(t)s(t) Kl(t,r) drdt - Ay XL s (t) at

L L
- A, EL IL s(t)s(t) Ké(t,r) drdt } (4.12a)

By combining integrals (4.12) becomes

L _.L
Max {I(s) = s(t)s(t) K(t,7) dt - A.s2(t)] at 4.1
Sx { EL [XL (t)s(t) K(t,T) dr 15 ( ] } (4.12v)
where
K(t,1) = K(7,t) (4.13a)
= K (t,7) - A K (t,7) (+.13p)

is symmetric for real h(t). K, and K, are given by (4.6b) and (4.11b),

respectively.

4.3 Solution in Terms of Maximum Eigenvalue and Corresponding
Eigenvector of a Symmetric Integral Operator

Suppose s in (4.12b) is the actual maximizing function. Now
choose any arbitrary function P and any constant ¢. By making the
following substitution

s— s +¢B (k.14)

T

and applying this first variation'! to (4.12b), a function of ¢ is formed

for an assigned s and B, i.e.,
L L
Iess,8) = [ { [ Is(e) + e8(£)10s(x) + eB(x)) K(t,7) ar
L " -L

- [s(t) + e8(6)1% } at (+.15)
Then a necessary condition18 for a maximum is

dal
= (e; s,B) =0 (#.16)
de ’ b4 e=o
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Applying this condition to (4.15) yields

&0 L ew %)1 8(x) + [s(x) ye«?)] 5(&)}
L o)
K(t,t) drdt - lef [s(t) 75/((1;)] B(t) at = O
“L

&.17)
Since K(t,t) is symmetric
L L L L
jl I s(t) B(T) K(t,T) drat =‘f _f s(t) B(t) K(t,T) arat  (4.18)
L L "L =L

and (4.16) reduces to

JJI:B(t) [ fzs(r) K(t,t) dt - xls(t)] dt = 0 (%.19)

For an arbitrary B, the bracketed coefficient of B in (%.19) must
venish identically on the interval [-L,LJ. Hence, the final form

for the optimum signal which maximizes (4.1) is

L
s(6) =2 [ a() K(t,7) ar, -Lgtgl (4.208)
1Y
or
L
[ () k(t,7) av = n5(8),  -Lgtgl (4.20b)
-L

The real, symmetric kernel of (4.20) is given by (k.6b), (4.1lb) and

(4.13b) as

K(t,t) = fw |H(f)|2 ejw(t'r) ar
Ao L
- £ JL[h(x-'r) h(x+2L-t) + h(x-t) h(x+2l-t)] dx  (4.21)

and

L=1T/2 (4.22)
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where T is the length of transmitter pulse as well as the assumed
length of the channel impulse response. Equation (4.20b) shows the
optimum signal is given as an eigenfunction of a symmetric integral
operator. Equation (h.zo) is also commonly known as a Fredholm inte-
gral equation of the second kind. Several methods are availablel8 for
solving this class of equations. However, solutions in closed form can
be obtained only in special cases, such as the example in section k.4,
A numerical method for solving this class of equation for an arbitrary
channel is given in Appendix B.

In order to completely specify the optimum signal, a method must
be determined for specifying the Lagrangian multipliers kl and 12.
At least one real eigenvalue solution to (4.20b) existsl8 since the ker-
nel is real, symmetric and continuous. Generally there are infinitely
many18 eigenvalues, each corresponding to an eigenfunction defined within
an arbitrary multiplicative constant. In exceptional casesls, a given
non-zero eigenvalue may correspond to at most a finite numberl9 of
linearly independent eigenfunctions. In such cases when & distinct,
non-zero eigenvalue does not correspond to a unique eigenfunction, then
physical reasoning must be applied to select the desired eigenfunction.
Since infinitely many eigenvalue solutions to (4.20b) may exist, the
problem is to determine which one will ultimately maximize (4.1). First,
consider the input energy to the channel for an optimum signal, obtained
by multiplying (4.20b) by s(t) and integrating over the specified inter-

val, i.e.,
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L
ME; =N IL sz(t) dt (4.23a)
L LL
= } X s(t) s(t) K(t,t) drat (4.23b)
L -L

Secondly, consider the equivalent form of (4.1) obtained by equating
(4.1) and (4.12b), i.e.,

L L

E, - ME; - AE = XL ILs(t)s(T) K(t,t) drtdt

L
- IL sz(t) at (4.24)

Now, by employing (4.23) for the optimum signal, in the right hand

side of (4.24), it can be set to zero and the following equation is

obtained when the optimum signal is employed in (4.24), namely,

Bo |y Mt T Mt (4.25)
opt

Hence, (4.25) shows that the energy out of the channel will be ulti-

mately maximized by choosing the largest eigenvalue and corresponding

eigenfunction for (4.20b).

Equations (4.20) and (4.21) show that A, is determined by the
kernel which is a function of Az. Hence, for each value of kz & new
maximum A and optimum signal will be obtained. From (4.3), (4.4)
and (4.20a), E, can be calculated as a function of A, bY

3L L L

E, = jL fL ILS(T)s(x)h(t-T)h(t-x) dtdxdt (4.26)

Likewise, from (4.9a) and (4.20a), Eht can be caculated as & function
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of 12 by
L L L,L

= ) x)h(t- L,
E. IL ‘[L ILS(T s(x)h(t-1)h(t+2L-x) a7 dx 4t &.27)

By normalizing E° to Ei’ the signal efficiency is defined as

E
i
and
E = n‘ (4.28b)
© E,=1
i
For the special case of Az =0, Cha.lk3 showed that the eigenvalue
*1 is identically the signal efficiency, i.e.,
n= kll (4.28e)
A;=0
The normalized head-tail cross-correlation is defined as
0= ___Et (4.29)
o]

For comparison purposes Ei can be assumed to be unity; then 12 can be
varied in the kernel of (4.20a) and a curve computed showing E,

versus p. From Figure 3-1 for probability of error, the final combi-
nation of Eo and p can be selected which ultimately minimizes probability
of error at a specified signal-to-noise ratio. This combination of E°
and p specify the optimum signal to be transmitted at this value of
signal-to-noise ratio. This procedure must be repeated for each value

of signal-to-noise ratio considered. This procedure was applied in
section 4.5 and Chapter V. For the specific channels considered in this

research, the range of relevant values of xz are given by
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|A2| <1 (&.30)

4.4 Case Study: First-Order Channel

An RC-lowpass channel is considered in this section in order to
make an analytical comparison with other research1’3. This channel
is one physical interpretation of a first-order channel. The analytic
form of the optimum signal is derived here and the system performance
is given in section 4.5.

The impulse response is given by

we® | t>o0

h(t) = { = (4.31a)
o} ) t<c O
where

o = 1 (%.31b)

Also the transfer function is given by

H(f) = 55%? (+.32)

Substituting (4.32) into (4.6b) and integrating yields

a -a|t-t|
=2 ,

K, (t,7) =3 -L<t, <L (4.33)

Likewise substituting (4.31a) into ¢+.11b) and integrating yields

. -kal

-L<t, =t (4. 34)

IA
e
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vhere the kernel is
K(t,7) = K (£,7) - A Ky lt,7) (&.35)

By substituting (4.35) into (4.20a) and expanding the integral, the

following form is obtained.
s(t) = L [ XtS(T)Kl(t,T) at + ILS(T)Kl(t,T) drt 1
ML t
L
-, [L s (1)K, (1,7) at (4.36)

Differentiation with respect to t will be indicated by a prime.

Now, differentiating (4.36) with respect to t twice yields

t L
s"(t) = %i [ [Ls(T)Ki(t,r) dr + Its(T)Ki(t,T)

- s(t) K (¢,7) - s(t) K] (t,7)

1<t 1=t ™t |t=t
L
Sag [ s &y (8) ar ] (4.37)
Jr "
where, from (4.33)
Ky (6,7) = (<) K (6,7) , Tgt (. 382)
Ki(t,r) = a? Kl(t,r) , t<t (4.38p)
and from (4.34)
K3 (t,7) = of K (t,1) (.39)

Substituting (4.38) and (4.39) back into (4.37) leaves
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L
s"(t) = o [%l j'L s(t) K(t,7) ar - %1 s(t) ] (4.40)

and on substituting (4.20a) yields & second-order differential equation,

i.e.,
s"(t) + az(% - 1) s(t) =0 (&.41)
1
Since (4.41) represents a physical system, it is satisfied by
the form x
St . St
s(t) = Ae +A e , L<tgl (4.428)
where
s, =jayi-o1 (4.42Db)
1 A
1
*
S, =-8) (4.42¢)

In order to insure a desired degree of approximation to adjacent
baud overlep, at most, the channel demping factor -- @ should be nor-

malized to the pulse length and restricted to

=

o
(ol B

a> (L.43)

where T is the pulse length. Also, the signalling rate was assumed to
be 1/T in Chapter III. In order to evaluate system performance for

unit channel memory in the next section, o was assumed to be

a = (b b4)

Hio

The accuracy of the assumption of unit memory can be increased by
simply increasing <.
The eigenvalue -- Ay and A can be determined by substituting

(4.42a) back into the integral equation (4.20) and equating similar
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terms. That is, A can be determined within e multiplicetive constant.
This constant will be specified by specifying a particular value of Ei'
In Appendix B, an algorithm for numerically solving the integral
equation in (4.20b) is described for an arbitrary channel. Since this
general numerical method was developed, it was used to solve for the
maximum eigenvalue and the form of s(t) for the RC channel above. This
procedure was iterated for a range of values of Az. For an arbitrary

A, the form of s(t) was a truncated half cosine wave with phase shift

2
determined by Az. For xz = O, the phase shift was zero, yielding the
same form that Chalk3 obtained for maximizing energy transferred through

an RC channel.

4,5 gystem Performance for Jointly Optimum Waveform and Receiver with
First-Order Channel

In order to determine the optimum pair of values of Eo and p
which are attainable for a specified channel, ), was varied in (4.20a).
This procedure generated the values plotted in Figure 4-1. The values
in Figure 4-1 were computed numerically by a program developed for experi-
mental channels and described in the block diagram of Figure 5-1.
Figure 4-1 shows the effect on signal efficiency -- T, of reducing p in
optimum signals on a first-order channel. The corresponding value of
T and p for a rectangular pulse of T seconds duration, into the same
channel is shown in Figure 4-1 also. For this particular RC channel
(@ = 2/T), the optimum signal for maximum energy transfer (p uncon-
strained), is practically a rectangular pulse. Hence it transfers just

3

slightly more energy than a rectangular pulse. Chalk~ showed that in

the limit as @ = » the optimum signal for maximum energy transfer becomes
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0.5
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0.2 0.25 0.3

p= Eht/Eo

Figure 4-1, RC Channel Output Characteristics
For Optimum Signal
rectangular. The merit of signal design becomes more apparent when p
is constrained such as in curve number two of Figure 4-2.

Now, in order to select the optimum signal to use, a signal-to-
noise ratio must be selected for the system under consideration to
operate around. For comparison purposes in Figure 4-2, 'noEi/No of
8 db was selected. Ei is the channel input energy for all systems,
no is the optimum signal efficiency and “oEi is the channel output
energy for the optimum signal. For this particular channel, a different
selection of ’noEi/No would not change the selection of the optimum
signal significantly since 7 drops off so sharply with p less than 0.25.
This leads to an optimum signel selection of characteristics (no = 0,598,

p = 0.250). In contrast, the rectangular pulse characteristics are
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Figure 4-2. Comparison of Jointly Optimum Transmitter
and Receiver Performance for RC Channel
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(M = 0.600, p = 0.288), The reduction in p pays off by a factor of
0.2db in signal-to-noise ratio, when used with an optimum receiver.
This is demonstrated by curves two and three in Figure 4-2. Of course,
if the optimum pulse were employed with a standard correlation receiver
in place of a rectangular pulse, then the relative improvement would be
much more significant since the standerd receiver is much more sensitive
to p. Curve four shows the system performance of a rectangular pulse
employed with a standard correlation receiver whose performance is
given by (3.18). Curve number one shows the optimum signal and receiver
performance when the signalling rate is reduced such that no overlap
of received signals occurs.

Curves one, two and four show that by employing a jointly optimum
transmitter and receiver at ‘noEi/No = 8 db, the effect of intersymbol
interference has been reduced from 4 db to approximately 0.5 db in

signal-to=noise ratio for an RC chennel.
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CHAPTER V

OPTIMUM SIGNALS FOR EXPERIMENTAL CHANNELS BY NUMERICAL METHODS

5.1 Introduction

This chapter considers experimental channels and offers a numeri-
cal procedure for obtaining optimum waveforms when the impulse response
is available only in sampled form. Of course, if an impulse response
is specified by a functional form, then it can be sampled and this
method applied. The purpose of the research in this chapter is:

(1) to demonstrate +that optimum signals can be obtained for experi-
mental channels where the impulse response is specified by a set of
samples, (2) to demonstrate that "optimum" signals can be generated in
a piecewise approximation sense and (3) to show an improvement in per-
formance with "optimum" signals by transmitting the "optimum" signal
and a rectangular pulse through the channel, computing T and p, and then
comparing probability of error curves.

In order to demonstrate that optimum signals can be obtained
numericeally for non-lumped-parameter, experimental channels, experi-
mental data representing the impulse response of a telephone channel
is submitted to this numerical procedure which produces the optimum

signal.
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5.2 Numerical Program for Optimum Signals

Figure 5-1 is & block diagram of major operations contained in
a computer program used to solve for optimum signals when supplied an
impulse response in sampled form. This program also computes channel
output characteristiecs (M, a, p) as a function of kz -~ the lagrangian
multiplier representing a constraint on p. This makes it possible to
select the ultimate optimum signal for a specific signal-to-noise
ratio without making many experimental runs on the channel. This pro-
gram is discussed in detail by Quincy in reference 23. The algoritim
used to solve the integral equation is discussed in Appendix B.

This program can also be entered at point 5 and 7 with experi-
mental data on channel input and output waveforms, to calculate channel

output characteristics.

5.3 Experimentally Simulated Second-Order Channel

Figure 5-2 shows an RLC network used to simulate a lossy second-
order channel of memory M £ 1 where the transmitted signal duration is
T = 0.001 second. The component values were chosen to yield the under-
damped impulse response shown in the photograph of Figure 5-3. The
measured impulse response was scaled to account for not applying a

unit area pulse in making the response measurement.

5.4 Experimental Input-Output Waveforms for Experimental Second-
Order Channel

Figure 5-4 is a photograph of a piecewise-approximation to an
optimum waveform transmitted into the RLC channel and the corresponding
output waveform. This particular optimum signal was selected to generate

in a piecewise approximation sense after studying the RLC channel output
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characteristics in Figure 5-6. These characteristics show that an
optimum signal can be obtained with |p| < 0.1 and no significantvloss

in energy transferred. The experimental input-output optimum waveforms
were sampled and data processed as shown in Figure 5-1. This processing
yielded values of T = 0.165 and p = - 0.0748 for the experimental optimum
signal. The magnitude of p is sufficiently small such that perfor-

mance of this signal with the optimum receiver is essentially the same

as with no intersymbol interference. Performance is discussed in more
detail in the next section. TFigure 5-5 is a photograph of an experi-
mental rectangular pulse into the RLC channel of Figure 5-2 and the
corresponding output waveform. These were both sampled and data processed

as shown in Figure 5-1. This yielded channel output characteristics of

N = 0.11% and p = - 0.497.
1000 Q 1k 0.25 ,f
o—AN— I o o
| A
e, (t) ;lOOOQ e (t)
% $ —0

Figure 5-2. Experimentally Simulated Second-Order Channel
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Figure 5-3. Experimental RLC Channel Impulse Response

Figure 5-4. Experimental Input-Output Optimum Waveforms for RLC Channel

Figure 5-5. Experimental Rectangular Pulse Input-Output Waveforms
for RLC Channel
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5.5 Performance Comparison of Optimum System for Experimental
Second-Order Channel

Figure 5-6 shows the output characteristics for optimum signals
into the experimental RLC channel of Figure 5-2. The values of T and
p were obtained numerically by supplying the computer program shown in
Figure 5-1 with sampled values of the impulse response shown in the
photograph of Figure 5-3. Then a range of values of ), for Ile <1
were supplied to the program which computed & pair of velues of T
and p for each Age This curve, relating 1 to p, was used to select
a particular pair of values of 1 and p and the corresponding optimum

signal to be experimentelly generated in section 5.3.

0020 f
Rect. Pulse:
™ “ = Oollz
p = -0.488
Eo 0,15 |-
=5
i
0.10 i H t i
«0.15 -0.10 -0,05

p= Eht/Eo

Figure 5-6. Experimental RLC Channel Output Characteristics
for Optimum Signals
The values of T = 0.112 and p = - 0.448 shown in Figure 5-6
for a rectangular pulse into the RLC channel were obtained by numeri-

cally convolving a theoretical rectangular pulse with the RLC impulse
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Figure 5-7. Performance Comparison of Jointly Optimum Transmitter

and Receiver for Experimental RIC Channel
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response and data processing this as shown in Figure 5-1.

The jointly optimum transmitter signal and optimum receiver are
compared on a performance basis in Figure 5-7 with: (1) a rectangular
pulse with optimum receiver and (2) rectangular pulse with standard
correlation receiver. In order to compare overall communications
systems, the energy into the channel is set equal for all systems.
Performance is given in terms of “o’ input energy and noise power at
the receiver input where noEi is the optimum signal's channel output
energy. The efficiency is then accounted for by horizontal translation
of probability of error curves, relative to the lowest curve. Curve
number one represents the jointly optimum experimental signal and optimum
receiver with parameters (no = 0,165, p = - 0.0748). This was determined
from Figure 3-1 to be essentially the same performance as the optimum
signal and optimum receiver with no intersymbol interference. This
situetion would occur if the signalling rate were reduced by more than
50 percent. Curve number two was obtained by an extrapolation of the
curves in Figure 3-1 and represents performance of the experimental
rectangular pulse with the optimum receiver for parameters\(n = 0,114,

p = - 0.497). It was translated to the right by
10 log (0.165/0.114} = 1.61 db

to account for the loss in signal efficiency. Curve number three repre-
sents the performance of the experimental rectangular pulse with the
standard correlation receiver (threshoid optimized for intersymbol
interference ), whose performance is described by (3.18), for parameters

(W = 0.114, p = - 0.497). This curve was also translated to the right
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by 1.61 db to account for loss in signal efficiency.

In comparing curves one and two, an improvement of approximately
3 db in signal-to-noise ratio is realized if the optimum signal is used
in place of a rectangular pulse with the optimum receiver. In comparing
curves one and three, the performance of the correlation receiver is
so poor that a comparison in terms of signal-to-noise ratio cannot be
made. However, an improvement in probability of error by a factor of
2.7 to T x lO3 (depending on the signal-to-noise ratio) can be realized
by using the Jointly optimum communication system in place of a rectan-
gular pulse and standard correlation receiver.

Curve one represents the Jjointly optimum system as well as the
optimum signal employed at half the signalling rate (no intersymbol
interference) with a standard correlation receiver. Hence, an improvement
in data rate by a factor of two can be realized with equal performance
by using a jointly optimum communication system in place of using the
optimum signal and standard correlation receiver with the signalling
rate reduced by one-half to prevent pulse overlap. The factor of two
improvement in data rate with performance improved by 1.61 db could be
realized if e rectangular pulse had been employed with the correlation

receiver in the preceding statement.

5.6 Telephone Channel-Experimental Data

Figure 5-8 shows the impulse response of a telephone channel
obtained by numerically transforming frequency domain data compiled by
Alexanderzo, et. al. Their data was given in terms of relative attenua-

tion and relative envelope delay. It represented an average of many
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measurements made on short haul lines (4 links N carrier). The parti-
cular data used was bandpass from 130 c¢ps to 3200 cps with quadratic
envelope delay centered in the band.

The impulse response* in Figure 5-8 drops in magnitude by a
factor of 10 at approximately 3.5 milli-seconds. Since the channels
considered in this research are those that yield adjacent baud overlap,
the memory is said to be unity and T is taken to be 3.5 ms. Thus, an
input pulse of duration T = 3.5 ms will be approximately 2T = 7 ms

duration at the channel output.

5.7 Computed Input-Output Optimum Waveforms for Telephone Channel

Figures 5-9 and 5--10 show the input and output optimum waveforms
respectively, for the telephone channel characterized by Figure 5-8.
These were computed numerically by the program shown in Figure 5-1 and

were used in computing performance shown in Figure 5-13.

5.8 Computed Rectangular Pulse Qutput Waveform for Telephone Channel

Figure 5-11 shows an input rectangular pulse of duration 3.5 ms
and the corresponding telephone channel output pulse of duration T ms.
The output pulse was computed numerically by the program shown in

Figure 5-1 and used in computing performance for Figure 5-13.

5.9 Performance Comparison of Optimum System for Telephone Channel

Figure 5-12 shows the optimum signal output characteristics for

the telephone channel. The curve was generated by the same method as

*
Note that in all computer plots, jumps are usually caused by quantized
plotting rather than discontimiities in the data.
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Figure 5-11. Rectangular Pulse Input-Output Waveforms for Telephone Channel
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Figure 5-6. It is interesting to note from Figure 5-12, that maximum
energy transfer occurs at a p close to zero for this practical channel.
The jointly optimum transmitter signal and iptimum receiver are
compared on a performance basis in Figure 5-13 with: (1) a rectangular
pulse with optimum receiver, (2) rectangular pulse with standard
correlation receiver and (3) rectangular pulse followed by bandpess

inverse filter with standard correlation receiver. In order to compare

L Rect. Pulse:

0,185 7 = 0,016k

p = ‘00#93
E

'n = E_?' 00165 =
1
Oolh’s 1 ] ] 1 1 1
-0, 20 -0,10 0 0.10
p= Eht/Eo

Figure 5-12. Telephone Channel Output Characteristics
for Optimm Signal
overall communication systems, the energy into the channel is set equal
for all systems. The signal-to-noise ratio is related to the transmitted
energy as in Figure 5-7. Signal efficiency is accounted for as in
Figure 5-T7, by horizontal translation of receiver probability of error

curves, relative to the lowest curve.



58

10°
S — (4)
— ==

1

10°

i .
\\

1072 AN

L. 1. Opt. Signal and Opt. Rec. =--
m= 0.1%, o = 0.0142. Same \\\\\\
curve if signalling rate re-
P duced by 2 so nc intersymbol
e interference with ﬂo= 0.196,

1073 o =0

N
2. Rect. Pulse and Opt. Rec. =-
B M = 0.0164, p = - 0,493,
3. Rect. Pulse followed by Bandpass
Channel Inverse Filter and Corre-
n lation Rec. -- T = 0.0202, \\x
10 +~ p = - O.417, a = 0,672,
. L4, Rect. Pulse and Correlation Rec. =--
7 = 0.0164, p = - 0,493, a = 0.527. (1)
107° L 1 1 1 I .
2 L 6 8 10 12

E/N, in db —

Figure 5-13. Performance Comparison of Jointly Optimum
Transmitter and Receiver for Telephone Channel
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Curve number one represents the jointly optimum signal and
optimum receiver with parameters (no = 0,19, p = 0.0172). Note that
this signal transfers maximum energy. This was determined from Figure 3-1
to be essentially the same performance as the optimum signal and optimum
receiver with no intersymbol interference which would occur if the sig-
nalling rate were reduced by at least 50 percent. Curve number two
was obtained by an extrapolation of the curves in Figure 3-1. It
represents performance of the experimental rectangular pulse with the
optimum receiver for parameters (1 = 0.0164, p = -~ 0.493). The receiver

performance curve was translated to the right by
10 log (0.196/0.0164) = 10.8 db

to account for the loss in signal efficiency, compared to the optimum
signal. Curve three represents the performance of an inverse filtering
27

system ' using the standard correlation receiver whose performance is
given by (3.18). A bandpass (130 to 3200 cps) inverse filter is used

at the transmitter to pre-distort the rectangular pulse in an attempt

to cancel the distortion or smearing characteristics of the channel
which also has the same bandpass. For comparison purposes, the energy
out of the inverse filter is considered to be the channel input energy.
The received pulse is more nearly rectangular than the system without

an inverse filter; however, there is still an overlapping tail caused by
the bandpass characteristics. Considerable energy is lost from the
rectangular pulse due to the bandpass characteristics. The transmitted

signal parameters for this system were (1} = 0.0202, p = ~ 0.417,

a = 0.672) which is not significantly different from the parameters of
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the rectangular pulse without &n inverse filter. Curve four represents
the performance of a rectangular pulse with the above standerd correlation
receiver (threshold optimized for intersymbol interference) for para-
meters (1 = 0,0164, p = = 0,493, a = 0,527), This curve was also trans-
lated to the right by 10.8 db to account for loss in signal efficiency.

In comparing the three curves of Figure 5-13, the optimum system
shows over 12 db improvement in terms of signal-to-noise ratio; come
pared to the sub-optimum systems. In terms of probability of error,
the optimum system shows factors of improvement ranging from 3.3 to
5000 (depending on the signal-to-noise ratio) when compared to the
rectanguler pulse with optimum receiver. The optimum system shows even
greater factors of improvement in probability of error when compared to
the other two sub-optimum systems.

Since curve number one &ls¢ represents the no intersymbol inter-
ference case, it shows that a factor of two improvement in data rate can
be achieved by the jointly optimum system plus an improvement of 10.8 db
in performance when compared to the rectangular pulse with standard

correlation receiver at half the data rate (no pulse overlap case).
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CHAPTER VI

CONCLUSIONS

6.1 Summary and Conclusions

The bayes, zero-memory receiver structure anq formulation of
probability of error are given for binary channels with M bauds of
memory. Then the memory is restricted to unity (adjacent baud over-
lap) in order that the probability of error could be numerically in-
tegrated for the non-linear, optimum receiver. For signal with |p'
as large as 0.3, the optimum receiver performance at a signal-to-noise
ratio of 10 db, is withing 0.6 db of the stendard correlation receiver
performance for no intersymbol interference. For optimum signals with
|p| < 0.1, the optimum receiver performance at all values of signal-
to-noise ratio, is essentially the same as the standard correlation
receiver performance for no intersymbol interference.

An equivalent criterion to minimum average probability of error
is derived for signal design from the curves for probability of error.
This optimum signal criterion is: (1) maximize energy transferred
through the channel while (2) constraining the cross-correlation energy
between the head and tail of the channel output signal. The optimum
signal for an arbitrary channel is given as the eigenfunction correspon-

ding to the maximum eigenvalue of a symmetric integral operator.
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A numerical algorithm is given which will solve the integral equation
for the optimum signal when supplied sampled values of an experimental
channel impulse response. This was most effectively demonstrated with
experimental telephone channel data.

For practical channels such as the telephone channel, the jointly
optimum transmitter and optimum receiver performance was shown to be
essentially the same as performance for the same signal with & standard
correlation receiver where the signaelling rate is reduced by one-half
to eliminate intersymbol interference. Hence, an improvement by a
factor of two in data rate with equal performance, can be achieved by
employing the optimum system, as compared to the optimum signal at
half the signalling rate, with a standard correlation receiver. If a
rectangular pulse were used with the standard correlation receiver in
the preceding statement, then the optimum system would show and addi-
tional improvement in performance of 10.8 db due to the additional
energy transferred by the optimum signal.

Since for practical channels the Jjointly optimum system achieves
ultimate performance, adding memory to the receiver would be of no
benefit. Consequently, the validity of zero-memory restriction used
here is demonstrated.

When considering practical channels such as the telephone channel,
where the optimum signal is oscillatory in nature, |p| can be reduced
significantly without significantly reducing the energy transferred.
Consequently, the optimum signal is very similar to Cha.lk's3 signal
which maximizes energy transferred -- except for primarily a phase

shift which reduces |p|° Al so, Chalk3 showed that 7| for his signal
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(kz = 0) is given by the maximm eigenvalue of the integral equation
representing his signal. Consequently, this eigenvalue can be used
as the least upper bound on T for other values of Kz'
The Jjointly optimum trensmitter and optimum receiver developed
in this research, possess and advantage over systems employing signals

which eliminate intersymbol interference and consequently do not transfer

maximum energy. In this research the channel output signal is allowed
to overlap, keeping the energy transferred within 0.1 db of the maximum.
However, for practical channels, |p| is made sufficiently small to
eliminate the effect of intersymbol interference.

Since the formulation of the optimum signal does not restrict
the channel memory when xz = 0, the numerical methods employed here can
be used to design signals for maximum energy transfer in other systems
with arbitrary memory channels.

For practical channels and the Jjointly optimum transmitter and
receiver, |p| is usually quite small (less than 0.1). Consequently,
in a practical situation a trade-off might be desired between receiver
complexity and system performance. If the signals are designed for
p = 0 (orthogonal head-tail), then the optimum receiver reduces from a
four-branch non-linear receiver to & two-branch linear correlation
receiver with observation period [0,2T]. In general, forcing p—=0
can only be done at the expense of less energy transferred through the
channel. Another possibility is using the optimum signal with small
lp] in conjunction with a two-branch linear correlation receiver having
observation period [0,2T] and parameters optimized for intersymbol

interference. In general, receiver performance may have to be sacrificed




for receiver simplicity. However, for the telephone channel meximum
energy transfer signals exhibited lpl sufficiently close to zero such
that & two-branch linear correlation receiver could be employed with
the optimum signal at no significant reduction in system performance.
Performance comparisons of the optimum receiver and jointly op-
timum system were made with other sub-optimum systems in order to
provide a feeling for the range of improvement attainable with the
optimum systems. No attempt was made to find the best sub-optimum
system, out of the multitude which exist, with which to compare the
optimum systems. However, it should be noted that the systems presented
in this research have the best theoretical performance of any systems

employing the assumption used here.

6.2. Recommendations for Further Study

Throughout this research the channels were assumed to be known
and time=-invarient. A natural evolution of this work would be to con-
sider unknown channels where the impulse response is not specified and
must be determined by the system. An adaptive system with a feed-back
channel should be considered. An estimation procedure could be employed
at the receiver to "learn" the impulse response from the received signal
plus noise, given a priori knowledge of the transmitted signel waveform.
This information could then be fed back to the transmitter to up-date
the optimum signal.

The next problem to be considered is the time-variant channel and
then the combined problem of unknown and time-variant channel. Finelly,

the random, time-variant channel should be investigated.
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Another major assumption employed in the latter part of this
research is that the channel memory is restricted to adjacent-baud
overlap. Possibly this work could be extended to M > 1. However,
establishing performance for M = 1 was extremely difficult and for
M > 1 the problem would surely be formidable if a bayes receiver is
employed.

Another possible extension of this problem would be to consider
m-ary signalling instead of the binary signalling used throughout this

research.
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APPERDIX A

Equation (3.1%), which expresses the average probability of

error for adjacent baud overlap, is expanded in this appendix to a

form amenable to numerical integration.

Equation (3.1%) is trans-

formed such that the first integration appears as the error function.

Then the remaining two definite integrations can be performed by any

integration algorighm such as Simpson's one-third rule.

Transforming the gaussian variables in (3.1%) to zero-mean

variasbles yields

yj = w,j - wj b j = 1’2’3
*
1g - 1g _ =14
3 3 3
where
wJ3'!‘ = f(w;:‘c, w'y')
12 1  —1%
W = + w

1 =N 1

10 14 -1s
Vo =¥y, W

(A.1a)

(A.1b)

(A.1c)

Since only the means were changed, the covariance remains unchanged.

By employing transformation (A.1l), (3.14%) can be rewritten as

T T 3,
r et L[] [ et T e

=1

(A.2a)



where

p(

The quadratic form of (A.2b) can be expanded as follows

where

and
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Substituting (A.5) into (A.3b) yields
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(A.3e)

(A.3b)

(A.4)
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(A.5b)

(A.6)

(A.7)
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Now P can be expressed as
e 2 2 33
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Consider the integration on le first (a.8)
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(A.9)
Now let
033 2
U= 5oz, dzlz = o33 du (A.10)
then
X ( \/
Z
J u 332 y)
Yo JE;'/JG
033 z*
33 2 ‘14 2
I - A -u
=3 33 5= IO e du (A.11a)
o
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VT %1y 2
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- 2(1 - £ j’o e™ au) (A.11p)
33
-1 je== >
=3 [1 - erf (— 7" %1, >] (A.11c)

Substituting (A.1lc) into (A.9) and that result into (A.8) yields
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1 12

Yi» yj are dummy variables; therefore, the only dependence on the

superscript £ is in the error function argument. Dropping the super-

seripts on the y's and expanding (A.12) yields

=1 j=1
_ 1 o J,co e i
Pe =2 dyp dyy
-® =0 21 \Jo I@wl

2 2

1y ¥ =i

B 22 2‘ g yi yj N
'BJ. .Y Zerf(’ 2 zlz)‘lyz dyy
-® - an c |§W| L:l

(A.13)
Moodzu has shown that the first term is %; therefore the final form

for P 1is
e
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2 2
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kg and wJ.

The covariance of wi

obtained by substituting (3.5) into (3.7) and evaluating for the

is not a function of k or ¢ and is

covariance. The elements of @W are

B

Gll =2 'N—g' (l + zp) (Aol'—(a.)
o
EO
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and of course
Gij = Oji ; i) j = 1}2)3 (A°178)

vwhere E_ is defined by (4.26), p is defined by (4.29) and the normalized

head energy - a is defined by
L o

j' z-(t) dt

-L

E
o]

(A.18)




[P

EO/No is defined as "signal-to-noise" ratio, where No is the noise
variance.

Equation (A.1%a) was numerically integrated22 to determine the
performance of the Bayes receiver for adjacent baud overlap and equi-
probable, bipolar signals. The performance curves are given in
Figure 3-1.

From (A.15), (A.16) and (A.17), Pe can be expressed as & function

of only three parameters, i.e.,

P, = £(E /N, p, &) (A.19)
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APPENDIX B

This appendix discusses & numerical method used to solve the
Fredholm equation of the second kind in (4.20b) for the maximum eigen-
value and corresponding optimum signal. This method was developed for
an arbitrary kernel and hence for an arbitrary channel. It was success-
fully computer im.plem.ented23° The integral was numerically integrated
by a rectangular integration rule. A rectangular rule was chosen in
order to preserve symmetry. Then n points in time were chosen to form
a system.l8 of n equations. These n equations were solved for the maximum
eigenvalue and corresponding eigenvector by and iterative techniqueZl°

By employing & rectangular integration rule (4.20b) can be

expressed in a limiting form as

n

lim & 2 K(t,7.) s(r.) =\.s(t), -L<t, T<L  (B.1)
Fvco J J 1 = =
51

where
a =|Tj+1 - rj|

Then for a particular instant of time t = ti

n
a ) Kty,my) s(ry) & ags(ty) (8.2)
j=1
Let
s; = s(ty) (B. 3a)
sy = s(TJ.) (B.3b)
k,, = K(t, ) (B.3c)
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For convenience, the approximate sign in (B.2) will be dropped. Now
a2 linear system of n equations can be formed by selecting n points

in time, i.e.,

n
o -
a ), 58 = A8
J=1
n
= ol
a z ks s AL S, b (B.4+)
J:l ° .
n ° °
4a Z kn,j 3 = 7‘1 sn
J=1 —
In matrix form (B.4) becomes
A KS =2AS (B.5)

1

yielding a discrete eigenvalue problem with symmetric kernel.

The iterative schexnezl presented here to compute the maximum
eigenvaelue and corresponding eigenvector can best be described by the
following outline

1. Choose initial vector

1
1
2. Try initial vector as a solution in (B.5); multiply out
d X s(o) = x(l) (B.7)
3. Normalize X(l) to first component and set
1)
(1) _ x¢
S = _(]_J (B.8a)
g
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M o= xil) (B.8b)
Lk, Try S(l) as a solution, multiply out
a x ) = x®) (B.9)
5. Normalize /
S = ;—15) (B.10a)
1
xiz) = x{z) (B, 10b)

6. TIterate procedure k times until desired accuracy is obtained.

T. Then
. x(k)
S = &) (B.1la)
X
A xik) (B.11b)

In the cases studied in this research the maximum eignevalue converged
to within 10 per cent accuracy in the third significant digit with no
more than 20 iterations. For example; an eigenvalue of 0,500 in the
kth iteration was greater than 0.499 on the k-1 interation. Since
(B.4) represents n equations with n+l unknowns, the solution in (5.11a)
is only determined to within an arbitrary multiplicative constant.

After the kernel is obtained by integrations on the impulse
response, the number of samples, n X n, required to represent the kernel
were not excessive. For exemple, the RC channel kernel in section 4.L4
can be solved for the approximate optimum signel using only 11 samples on
[-L,L] for L = 0.5 milliseconds. For practical purposes, the results

did not change significantly by incresasing the number of samples.
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